Data Structure and Algorithms
  • Introduction
  • 面经
    • 亚马逊面经
  • Sorting
    • Quick Sort
    • Merge Sort
    • Heap Sort
  • Palindrome
    • Check String Palindrom
    • Palindrome Partitioning
    • Palindrome Partitioning II
    • Longest Palindromic Substring
    • Valid Palindrome
  • Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Remove Nth Node From End of List
    • Remove Linked List Elements
    • Remove Duplicates from Unsorted List
    • Remove duplicate Circular Linked list
    • Reverse Linked List
    • Reverse Linked List II
    • Reverse Nodes in k-Group
    • Partition List
    • Insertion Sort List
    • Reorder List
    • Linked List Cycle
    • Rotate List
    • Merge k Sorted Lists
    • Copy List with Random Pointer
    • Nth to Last Node in List
    • Add Two Numbers
    • Add Two Numbers II
    • Palindrome Linked List
  • Binary Search
    • Sqrt(x)
    • Search a 2D Matrix
    • Search a 2D Matrix II
    • Search Insert Position
    • First Position of Target
    • Last Position of Target
    • Count of Smaller Number
    • Search for a Range
    • Search in a Big Sorted Array
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Find Peak Element*
    • Recover Rotated Sorted Array
    • Rotate String
    • Wood Cut
    • Total Occurrence of Target
    • Closest Number in Sorted Array
    • K Closest Number in Sorted Array
    • Maximum Number in Mountain Sequence
    • Search Insert Position *
    • Pow(x, n)
    • Divide Two Integers
  • Graph
    • Clone Graph
    • Topological Sorting
    • Permutations
    • Permutations II
    • Subsets
    • Subsets II
    • Word Ladder
    • Word Ladder II
    • N-Queens
    • N-Queens II
    • Connected Component in Undirected Graph
    • Six Degrees
    • String Permutation II
    • Letter Case Permutation
  • Data Structure
    • Min Stack
    • Implement a Queue by Two Stacks
    • Largest Rectangle in Histogram
    • Max Tree
    • Rehashing
    • LRU Cache
    • Subarray Sum
    • Anagrams
    • Longest Consecutive Sequence
    • Data Stream Median
    • Heapify
    • Ugly Number
    • Ugly Number II
  • Misc
    • PlaceHolder
    • Fibonacci
  • Array and Numbers
    • Merge Sorted Array
    • Merge Two Sorted Arrays
    • Median of two Sorted Arrays
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Maximum Subarray
    • Maximum Subarray II
    • Maximum Subarray III
    • Minimum Subarray
    • Maximum Subarray Difference
    • Subarray Sum
    • Subarray Sum Closest
    • Two Sum
    • 3Sum
    • 3Sum Closest
    • 4Sum
    • k Sum
    • k Sum II
    • Partition Array
    • Sort Letters by Case
    • Sort Colors
    • Sort Colors II
    • Interleaving Positive and Negative Numbers
    • Spiral Matrix
    • Spiral Matrix II
    • Rotate Image
  • Dynamic Programming I
    • Triangle
    • Minimum Path Sum
    • Unique Paths
    • Unique Paths II
    • Climbing Stairs
    • Jump Game
    • Jump Game II
    • 01 Matrix
    • Longest Line of Consecutive One in Matrix
    • Shortest Path in Binary Matrix
  • Dynamic Programming II
    • Word Break
    • Longest Common Subsequence
    • Longest Common Substring
    • Edit Distance
    • Distinct Subsequences
    • Interleaving String
    • k Sum
  • Binary Tree And Divide Conquer
    • Binary Tree Preorder Traversal*
    • Binary Tree Inorder Traversal*
    • Binary Tree Postorder Traversal*
    • Maximum Depth of Binary Tree
    • Minimum Depth of Binary Tree
    • Balanced Binary Tree
    • Lowest Common Ancestor
    • Binary Tree Maximum Path Sum
    • Binary Tree Maximum Path Sum II
    • Binary Tree Level Order Traversal*
    • Binary Tree Level Order Traversal II
    • Binary Tree Zigzag Level Order Traversal
    • Validate Binary Search Tree
    • Inorder Successor in Binary Search Tree
    • Binary Search Tree Iterator
    • Search Range in Binary Search Tree
    • Insert Node in a Binary Search Tree
    • Remove Node in Binary Search Tree
    • Find the kth largest element in the BST
    • Kth Smallest Element in a BST
    • Serialize and Deserialize Binary Tree*
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Convert Sorted Array to Binary Search Tree
    • Unique Binary Search Trees *
    • Unique Binary Search Trees II *
    • Recover Binary Search Tree
    • Same Tree
    • Symmetric Tree
    • Path Sum*
    • Path Sum II*
    • Flatten Binary Tree to Linked List
    • Populating Next Right Pointers in Each Node
    • Sum Root to Leaf Numbers
    • Binary Tree Right Side View
    • Count Complete Tree Nodes
    • Invert Binary Tree
    • Binary Tree Paths*
    • Subtree of Another Tree
  • A家面试总结
  • Expedia面经收集
  • Python 常用语句
  • lotusflare
  • Microsoft
  • 模板
  • Bing 组面试总结
  • 面试笔记
  • Sliding window
Powered by GitBook
On this page
  • Clarification
  • Example
  • Solution:

Was this helpful?

  1. Data Structure

Data Stream Median

Numbers keep coming, return the median of numbers at every time a new number added.

Clarification

What's the definition of Median?

Median is the number that in the middle of a sorted array. If there are n numbers in a sorted array A, the median is A[(n - 1) / 2]. For example, if A=[1,2,3], median is 2. If A=[1,19], median is 1.

Example

For numbers coming list: [1, 2, 3, 4, 5], return [1, 1, 2, 2, 3].

For numbers coming list: [4, 5, 1, 3, 2, 6, 0], return [4, 4, 4, 3, 3, 3, 3].

For numbers coming list: [2, 20, 100], return [2, 2, 20].

Solution:

Python 默认是小顶堆的,所以自动排成1 2 3 4 5 6 peek 为第一个元素

可以 乘 -1 放入队列, 这样小顶堆自动变成了大顶堆, 取出的时候 * -1

大小 顶堆的思路,尽量让大顶堆最多只比小顶堆多一个元素,这样中值无论奇偶都是当前的大顶堆的peek()

12345 -> 6789 median = 5

1234 -> 6789 median = 4

这道题给我们一个数据流,让我们找出中位数,由于数据流中的数据并不是有序的,所以我们首先应该想个方法让其有序。如果我们用vector来保存数据流的话,每进来一个新数据都要给数组排序,很不高效。所以之后想到用multiset这个数据结构,是有序保存数据的,但是它不能用下标直接访问元素,找中位数也不高效。这里用到的解法十分巧妙,我们使用大小堆来解决问题,其中大堆保存右半段较大的数字,小堆保存左半段较小的数组。这样整个数组就被中间分为两段了,由于堆的保存方式是由大到小,我们希望大堆里面的数据是从小到大,这样取第一个来计算中位数方便。我们用到一个小技巧,就是存到大堆里的数先取反再存,这样由大到小存下来的顺序就是实际上我们想要的从小到大的顺序。当大堆和小堆中的数字一样多时,我们取出大堆小堆的首元素求平均值,当小堆元素多时,取小堆首元素为中位数

import heapq
class Solution:
    """
    @param nums: A list of integers.
    @return: The median of numbers
    """
    def medianII(self, nums):
        if nums == None or len(nums) == 0:
            return 0
        # write your code here
        maxheap, minheap = [], []
        res = [0] * len(nums)

        heapq.heappush(maxheap, nums[0] * -1)
        res[0] = nums[0]

        for i in range(1, len(nums)):
            x = nums[i]
            if nums[i] <= maxheap[0] * -1 :
                heapq.heappush(maxheap, nums[i] * -1)
            else:
                heapq.heappush(minheap, nums[i])

            if len(maxheap) - len(minheap) > 1:
                heapq.heappush(minheap, heapq.heappop(maxheap) * -1 )
            elif len(maxheap) < len(minheap):
                heapq.heappush(maxheap, heapq.heappop(minheap) * -1 )

            res[i] = maxheap[0] * -1
        return res
PreviousLongest Consecutive SequenceNextHeapify

Last updated 4 years ago

Was this helpful?