Data Structure and Algorithms
  • Introduction
  • 面经
    • 亚马逊面经
  • Sorting
    • Quick Sort
    • Merge Sort
    • Heap Sort
  • Palindrome
    • Check String Palindrom
    • Palindrome Partitioning
    • Palindrome Partitioning II
    • Longest Palindromic Substring
    • Valid Palindrome
  • Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Remove Nth Node From End of List
    • Remove Linked List Elements
    • Remove Duplicates from Unsorted List
    • Remove duplicate Circular Linked list
    • Reverse Linked List
    • Reverse Linked List II
    • Reverse Nodes in k-Group
    • Partition List
    • Insertion Sort List
    • Reorder List
    • Linked List Cycle
    • Rotate List
    • Merge k Sorted Lists
    • Copy List with Random Pointer
    • Nth to Last Node in List
    • Add Two Numbers
    • Add Two Numbers II
    • Palindrome Linked List
  • Binary Search
    • Sqrt(x)
    • Search a 2D Matrix
    • Search a 2D Matrix II
    • Search Insert Position
    • First Position of Target
    • Last Position of Target
    • Count of Smaller Number
    • Search for a Range
    • Search in a Big Sorted Array
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Find Peak Element*
    • Recover Rotated Sorted Array
    • Rotate String
    • Wood Cut
    • Total Occurrence of Target
    • Closest Number in Sorted Array
    • K Closest Number in Sorted Array
    • Maximum Number in Mountain Sequence
    • Search Insert Position *
    • Pow(x, n)
    • Divide Two Integers
  • Graph
    • Clone Graph
    • Topological Sorting
    • Permutations
    • Permutations II
    • Subsets
    • Subsets II
    • Word Ladder
    • Word Ladder II
    • N-Queens
    • N-Queens II
    • Connected Component in Undirected Graph
    • Six Degrees
    • String Permutation II
    • Letter Case Permutation
  • Data Structure
    • Min Stack
    • Implement a Queue by Two Stacks
    • Largest Rectangle in Histogram
    • Max Tree
    • Rehashing
    • LRU Cache
    • Subarray Sum
    • Anagrams
    • Longest Consecutive Sequence
    • Data Stream Median
    • Heapify
    • Ugly Number
    • Ugly Number II
  • Misc
    • PlaceHolder
    • Fibonacci
  • Array and Numbers
    • Merge Sorted Array
    • Merge Two Sorted Arrays
    • Median of two Sorted Arrays
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Maximum Subarray
    • Maximum Subarray II
    • Maximum Subarray III
    • Minimum Subarray
    • Maximum Subarray Difference
    • Subarray Sum
    • Subarray Sum Closest
    • Two Sum
    • 3Sum
    • 3Sum Closest
    • 4Sum
    • k Sum
    • k Sum II
    • Partition Array
    • Sort Letters by Case
    • Sort Colors
    • Sort Colors II
    • Interleaving Positive and Negative Numbers
    • Spiral Matrix
    • Spiral Matrix II
    • Rotate Image
  • Dynamic Programming I
    • Triangle
    • Minimum Path Sum
    • Unique Paths
    • Unique Paths II
    • Climbing Stairs
    • Jump Game
    • Jump Game II
    • 01 Matrix
    • Longest Line of Consecutive One in Matrix
    • Shortest Path in Binary Matrix
  • Dynamic Programming II
    • Word Break
    • Longest Common Subsequence
    • Longest Common Substring
    • Edit Distance
    • Distinct Subsequences
    • Interleaving String
    • k Sum
  • Binary Tree And Divide Conquer
    • Binary Tree Preorder Traversal*
    • Binary Tree Inorder Traversal*
    • Binary Tree Postorder Traversal*
    • Maximum Depth of Binary Tree
    • Minimum Depth of Binary Tree
    • Balanced Binary Tree
    • Lowest Common Ancestor
    • Binary Tree Maximum Path Sum
    • Binary Tree Maximum Path Sum II
    • Binary Tree Level Order Traversal*
    • Binary Tree Level Order Traversal II
    • Binary Tree Zigzag Level Order Traversal
    • Validate Binary Search Tree
    • Inorder Successor in Binary Search Tree
    • Binary Search Tree Iterator
    • Search Range in Binary Search Tree
    • Insert Node in a Binary Search Tree
    • Remove Node in Binary Search Tree
    • Find the kth largest element in the BST
    • Kth Smallest Element in a BST
    • Serialize and Deserialize Binary Tree*
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Convert Sorted Array to Binary Search Tree
    • Unique Binary Search Trees *
    • Unique Binary Search Trees II *
    • Recover Binary Search Tree
    • Same Tree
    • Symmetric Tree
    • Path Sum*
    • Path Sum II*
    • Flatten Binary Tree to Linked List
    • Populating Next Right Pointers in Each Node
    • Sum Root to Leaf Numbers
    • Binary Tree Right Side View
    • Count Complete Tree Nodes
    • Invert Binary Tree
    • Binary Tree Paths*
    • Subtree of Another Tree
  • A家面试总结
  • Expedia面经收集
  • Python 常用语句
  • lotusflare
  • Microsoft
  • 模板
  • Bing 组面试总结
  • 面试笔记
  • Sliding window
Powered by GitBook
On this page
  • Example
  • Solution

Was this helpful?

  1. Data Structure

Ugly Number II

Ugly number is a number that only have factors 2, 3 and 5.

Design an algorithm to find the nth ugly number. The first 10 ugly numbers are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12...

Example

If n=9, return 10.

Solution

(1) DP O(n)

the key is there are 3 indexing as a jumper.

(2) Priority Queue O(klogk)

heapq.heappop , pop the min value int he queue.

while from 0 to N

while level < 3

push

这里让我们找到第n个丑陋数,还好题目中给了很多提示,基本上相当于告诉我们解法了,根据提示中的信息,我们知道丑陋数序列可以拆分为下面3个子列表:

(1) 1×2, 2×2, 3×2, 4×2, 5×2, …

(2) 1×3, 2×3, 3×3, 4×3, 5×3, …

(3) 1×5, 2×5, 3×5, 4×5, 5×5, …

(3) 解题思路:

丑陋数序列可以拆分为下面3个子列表:

(1) 1×2, 2×2, 3×2, 4×2, 5×2, …

(2) 1×3, 2×3, 3×3, 4×3, 5×3, …

(3) 1×5, 2×5, 3×5, 4×5, 5×5, …

我们可以发现每一个子列表都是丑陋数本身(1, 2, 3, 4, 5, …) 乘以 2, 3, 5

接下来我们使用与归并排序相似的合并方法,从3个子列表中获取丑陋数。每一步我们从中选出最小的一个,然后向后移动一步。

class Solution:
    """
    @param {int} n an integer.
    @return {int} the nth prime number as description.
    """
    def nthUglyNumber(self, n):
        f = [0] * n
        f[0] = 1
        index2 = index3 = index5 = 0
        minValue = 0
        for i in range(1, n):
            f[i] = min(f[index2] * 2, f[index3] * 3, f[index5] * 5)
            if f[i] == f[index2] * 2 :
                index2 += 1
            if f[i] == f[index3] * 3 :
                index3 += 1
            if f[i] == f[index5] * 5 :
                index5 += 1
        return f[-1]

    def nthUglyNumber2(self, n):
        q = [1]
        i2 = i3 = i5 = 0
        while len(q) < n:
            m2, m3, m5 = q[i2] * 2, q[i3] * 3, q[i5] * 5
            m = min(m2, m3, m5)
            if m == m2:
                i2 += 1
            if m == m3:
                i3 += 1
            if m == m5:
                i5 += 1
            q += m,
        return q[-1]
PreviousUgly NumberNextMisc

Last updated 4 years ago

Was this helpful?

参考:

http://www.geeksforgeeks.org/ugly-numbers/
http://bookshadow.com/weblog/2015/08/19/leetcode-ugly-number-ii/