Data Structure and Algorithms
  • Introduction
  • 面经
    • 亚马逊面经
  • Sorting
    • Quick Sort
    • Merge Sort
    • Heap Sort
  • Palindrome
    • Check String Palindrom
    • Palindrome Partitioning
    • Palindrome Partitioning II
    • Longest Palindromic Substring
    • Valid Palindrome
  • Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Remove Nth Node From End of List
    • Remove Linked List Elements
    • Remove Duplicates from Unsorted List
    • Remove duplicate Circular Linked list
    • Reverse Linked List
    • Reverse Linked List II
    • Reverse Nodes in k-Group
    • Partition List
    • Insertion Sort List
    • Reorder List
    • Linked List Cycle
    • Rotate List
    • Merge k Sorted Lists
    • Copy List with Random Pointer
    • Nth to Last Node in List
    • Add Two Numbers
    • Add Two Numbers II
    • Palindrome Linked List
  • Binary Search
    • Sqrt(x)
    • Search a 2D Matrix
    • Search a 2D Matrix II
    • Search Insert Position
    • First Position of Target
    • Last Position of Target
    • Count of Smaller Number
    • Search for a Range
    • Search in a Big Sorted Array
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Find Peak Element*
    • Recover Rotated Sorted Array
    • Rotate String
    • Wood Cut
    • Total Occurrence of Target
    • Closest Number in Sorted Array
    • K Closest Number in Sorted Array
    • Maximum Number in Mountain Sequence
    • Search Insert Position *
    • Pow(x, n)
    • Divide Two Integers
  • Graph
    • Clone Graph
    • Topological Sorting
    • Permutations
    • Permutations II
    • Subsets
    • Subsets II
    • Word Ladder
    • Word Ladder II
    • N-Queens
    • N-Queens II
    • Connected Component in Undirected Graph
    • Six Degrees
    • String Permutation II
    • Letter Case Permutation
  • Data Structure
    • Min Stack
    • Implement a Queue by Two Stacks
    • Largest Rectangle in Histogram
    • Max Tree
    • Rehashing
    • LRU Cache
    • Subarray Sum
    • Anagrams
    • Longest Consecutive Sequence
    • Data Stream Median
    • Heapify
    • Ugly Number
    • Ugly Number II
  • Misc
    • PlaceHolder
    • Fibonacci
  • Array and Numbers
    • Merge Sorted Array
    • Merge Two Sorted Arrays
    • Median of two Sorted Arrays
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Maximum Subarray
    • Maximum Subarray II
    • Maximum Subarray III
    • Minimum Subarray
    • Maximum Subarray Difference
    • Subarray Sum
    • Subarray Sum Closest
    • Two Sum
    • 3Sum
    • 3Sum Closest
    • 4Sum
    • k Sum
    • k Sum II
    • Partition Array
    • Sort Letters by Case
    • Sort Colors
    • Sort Colors II
    • Interleaving Positive and Negative Numbers
    • Spiral Matrix
    • Spiral Matrix II
    • Rotate Image
  • Dynamic Programming I
    • Triangle
    • Minimum Path Sum
    • Unique Paths
    • Unique Paths II
    • Climbing Stairs
    • Jump Game
    • Jump Game II
    • 01 Matrix
    • Longest Line of Consecutive One in Matrix
    • Shortest Path in Binary Matrix
  • Dynamic Programming II
    • Word Break
    • Longest Common Subsequence
    • Longest Common Substring
    • Edit Distance
    • Distinct Subsequences
    • Interleaving String
    • k Sum
  • Binary Tree And Divide Conquer
    • Binary Tree Preorder Traversal*
    • Binary Tree Inorder Traversal*
    • Binary Tree Postorder Traversal*
    • Maximum Depth of Binary Tree
    • Minimum Depth of Binary Tree
    • Balanced Binary Tree
    • Lowest Common Ancestor
    • Binary Tree Maximum Path Sum
    • Binary Tree Maximum Path Sum II
    • Binary Tree Level Order Traversal*
    • Binary Tree Level Order Traversal II
    • Binary Tree Zigzag Level Order Traversal
    • Validate Binary Search Tree
    • Inorder Successor in Binary Search Tree
    • Binary Search Tree Iterator
    • Search Range in Binary Search Tree
    • Insert Node in a Binary Search Tree
    • Remove Node in Binary Search Tree
    • Find the kth largest element in the BST
    • Kth Smallest Element in a BST
    • Serialize and Deserialize Binary Tree*
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Convert Sorted Array to Binary Search Tree
    • Unique Binary Search Trees *
    • Unique Binary Search Trees II *
    • Recover Binary Search Tree
    • Same Tree
    • Symmetric Tree
    • Path Sum*
    • Path Sum II*
    • Flatten Binary Tree to Linked List
    • Populating Next Right Pointers in Each Node
    • Sum Root to Leaf Numbers
    • Binary Tree Right Side View
    • Count Complete Tree Nodes
    • Invert Binary Tree
    • Binary Tree Paths*
    • Subtree of Another Tree
  • A家面试总结
  • Expedia面经收集
  • Python 常用语句
  • lotusflare
  • Microsoft
  • 模板
  • Bing 组面试总结
  • 面试笔记
  • Sliding window
Powered by GitBook
On this page

Was this helpful?

  1. Graph

N-Queens II

Follow up for N-Queens problem.

Now, instead outputting board configurations, return the total number of distinct solutions.

Example

For n=4, there are 2 distinct solutions.

Solution:

这道题的区别就是不需要把具体方案打印出来,但是还是需要usedColumns变量来动态的存储方案的情况。

class Solution:
    """
    Calculate the total number of distinct N-Queen solutions.
    @param n: The number of queens.
    @return: The total number of distinct solutions.
    """
    def __init__(self):
        self.sum = 0
    def totalNQueens(self, n):
        # write your code here
        usedColumns = [0] * n
        self.dfs(usedColumns, 0)
        return self.sum
    def dfs(self, usedColumns, row):
        n = len(usedColumns)
        if n == row:
            self.sum += 1
            return
        for i in range(n):
            if self.isValid(usedColumns, row, i):
                usedColumns[row] = i 
                self.dfs(usedColumns, row + 1)
    def isValid(self, usedColumns, row, col):
        for i in range(row):
            if usedColumns[i] == col:
                return False
            if row - i == abs(col - usedColumns[i]):
                return False
        return True

回溯法:

class Solution:
    def totalNQueens(self, n: int) -> int:

        attack_zone = []
        directions = [(0,-1), (0,1), (-1,0), (1,0), (-1,1), (1,-1), (1,1), (-1,-1)]

        def is_not_under_attack(row = 0, col = 0):

            if (row, col) in attack_zone:
                return False

            return True

        def place_queen(row = 0, col = 0):

            attack_zone.append((row, col))

            for x, y in directions:

                moveX = row + x
                moveY = col + y

                while moveX >= 0 and moveX < n and moveY >= 0 and moveY < n:

                    attack_zone.append((moveX, moveY))

                    moveX += x
                    moveY += y

        def remove_queen(row = 0, col = 0):

            attack_zone.remove((row, col))

            for x, y in directions:

                moveX = row + x
                moveY = col + y

                while moveX >= 0 and moveX < n and moveY >= 0 and moveY < n:

                    attack_zone.remove((moveX, moveY))

                    moveX += x
                    moveY += y

        def backtrack_nqueen(row = 0, count = 0):

            for col in range(n):

                # iterate through columns at the curent row.
                if is_not_under_attack(row, col):

                    # explore this partial candidate solution, and mark the attacking zone
                    place_queen(row, col)

                    if row + 1 == n:
                        # we reach the bottom, i.e. we find a solution!
                        count += 1
                    else:
                        # we move on to the next row
                        count = backtrack_nqueen(row + 1, count)

                    # backtrack, i.e. remove the queen and remove the attacking zone.
                    remove_queen(row, col)

            return count

        if n == 0:
            return 1

        return backtrack_nqueen()
PreviousN-QueensNextConnected Component in Undirected Graph

Last updated 4 years ago

Was this helpful?