Data Structure and Algorithms
  • Introduction
  • 面经
    • 亚马逊面经
  • Sorting
    • Quick Sort
    • Merge Sort
    • Heap Sort
  • Palindrome
    • Check String Palindrom
    • Palindrome Partitioning
    • Palindrome Partitioning II
    • Longest Palindromic Substring
    • Valid Palindrome
  • Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Remove Nth Node From End of List
    • Remove Linked List Elements
    • Remove Duplicates from Unsorted List
    • Remove duplicate Circular Linked list
    • Reverse Linked List
    • Reverse Linked List II
    • Reverse Nodes in k-Group
    • Partition List
    • Insertion Sort List
    • Reorder List
    • Linked List Cycle
    • Rotate List
    • Merge k Sorted Lists
    • Copy List with Random Pointer
    • Nth to Last Node in List
    • Add Two Numbers
    • Add Two Numbers II
    • Palindrome Linked List
  • Binary Search
    • Sqrt(x)
    • Search a 2D Matrix
    • Search a 2D Matrix II
    • Search Insert Position
    • First Position of Target
    • Last Position of Target
    • Count of Smaller Number
    • Search for a Range
    • Search in a Big Sorted Array
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Find Peak Element*
    • Recover Rotated Sorted Array
    • Rotate String
    • Wood Cut
    • Total Occurrence of Target
    • Closest Number in Sorted Array
    • K Closest Number in Sorted Array
    • Maximum Number in Mountain Sequence
    • Search Insert Position *
    • Pow(x, n)
    • Divide Two Integers
  • Graph
    • Clone Graph
    • Topological Sorting
    • Permutations
    • Permutations II
    • Subsets
    • Subsets II
    • Word Ladder
    • Word Ladder II
    • N-Queens
    • N-Queens II
    • Connected Component in Undirected Graph
    • Six Degrees
    • String Permutation II
    • Letter Case Permutation
  • Data Structure
    • Min Stack
    • Implement a Queue by Two Stacks
    • Largest Rectangle in Histogram
    • Max Tree
    • Rehashing
    • LRU Cache
    • Subarray Sum
    • Anagrams
    • Longest Consecutive Sequence
    • Data Stream Median
    • Heapify
    • Ugly Number
    • Ugly Number II
  • Misc
    • PlaceHolder
    • Fibonacci
  • Array and Numbers
    • Merge Sorted Array
    • Merge Two Sorted Arrays
    • Median of two Sorted Arrays
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Maximum Subarray
    • Maximum Subarray II
    • Maximum Subarray III
    • Minimum Subarray
    • Maximum Subarray Difference
    • Subarray Sum
    • Subarray Sum Closest
    • Two Sum
    • 3Sum
    • 3Sum Closest
    • 4Sum
    • k Sum
    • k Sum II
    • Partition Array
    • Sort Letters by Case
    • Sort Colors
    • Sort Colors II
    • Interleaving Positive and Negative Numbers
    • Spiral Matrix
    • Spiral Matrix II
    • Rotate Image
  • Dynamic Programming I
    • Triangle
    • Minimum Path Sum
    • Unique Paths
    • Unique Paths II
    • Climbing Stairs
    • Jump Game
    • Jump Game II
    • 01 Matrix
    • Longest Line of Consecutive One in Matrix
    • Shortest Path in Binary Matrix
  • Dynamic Programming II
    • Word Break
    • Longest Common Subsequence
    • Longest Common Substring
    • Edit Distance
    • Distinct Subsequences
    • Interleaving String
    • k Sum
  • Binary Tree And Divide Conquer
    • Binary Tree Preorder Traversal*
    • Binary Tree Inorder Traversal*
    • Binary Tree Postorder Traversal*
    • Maximum Depth of Binary Tree
    • Minimum Depth of Binary Tree
    • Balanced Binary Tree
    • Lowest Common Ancestor
    • Binary Tree Maximum Path Sum
    • Binary Tree Maximum Path Sum II
    • Binary Tree Level Order Traversal*
    • Binary Tree Level Order Traversal II
    • Binary Tree Zigzag Level Order Traversal
    • Validate Binary Search Tree
    • Inorder Successor in Binary Search Tree
    • Binary Search Tree Iterator
    • Search Range in Binary Search Tree
    • Insert Node in a Binary Search Tree
    • Remove Node in Binary Search Tree
    • Find the kth largest element in the BST
    • Kth Smallest Element in a BST
    • Serialize and Deserialize Binary Tree*
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Convert Sorted Array to Binary Search Tree
    • Unique Binary Search Trees *
    • Unique Binary Search Trees II *
    • Recover Binary Search Tree
    • Same Tree
    • Symmetric Tree
    • Path Sum*
    • Path Sum II*
    • Flatten Binary Tree to Linked List
    • Populating Next Right Pointers in Each Node
    • Sum Root to Leaf Numbers
    • Binary Tree Right Side View
    • Count Complete Tree Nodes
    • Invert Binary Tree
    • Binary Tree Paths*
    • Subtree of Another Tree
  • A家面试总结
  • Expedia面经收集
  • Python 常用语句
  • lotusflare
  • Microsoft
  • 模板
  • Bing 组面试总结
  • 面试笔记
  • Sliding window
Powered by GitBook
On this page
  • Example
  • Solution:

Was this helpful?

  1. Data Structure

Largest Rectangle in Histogram

PreviousImplement a Queue by Two StacksNextMax Tree

Last updated 4 years ago

Was this helpful?

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.

Example

Given height = [2,1,5,6,2,3],

return 10.

Solution:

(1) 首先可以想到暴力法,两层循环 , 复杂度n^3

(2) 递增栈, 递减栈, 是常用的解决找到每个数左右比他小的数。与TreeMap 异曲同工。如图上所示,维持一个递增栈不符合条件的例如,5, 6, 这个时候就需要对5,6, 从后面往前遍历,例如下面列表中,i =4, 的两种情况。

首先就是维护一个递增盏,当每次弹出不合格的盏,需要计算下宽度, 高度,面积,由于是递增盏,i - j - 1 这个面积内必定高度全部满足于curr, j + 1, j 是当前柱形图的前一个位置,i则是递减的位置,两头一减,中间的必然就是全部满足的,根据递增盏的性质。

if current = 5, so 1 less 5 and 2 less 5 so 5 * 2 = current 5 max value

the stack should always store index then real value which could be duplicate

i=1 w=1 h=2

i=4 w=1 h=6

i=4 w=2 h=5

i=6 w=1 h=3

i=6 w=4 h=2

i=6 w=6 h=1

class Solution:
    """
    @param height: A list of integer
    @return: The area of largest rectangle in the histogram
    """
    def largestRectangleArea(self, height):
        stack = []
        area = 0
        for i in range(len(height) + 1):
            curr = height[i] if i < len(height) else -1
            while stack and curr <= height[stack[-1]]:
                h = height[stack.pop()]
                w = i - stack[-1] - 1 if stack else i
                area = max(area, h * w)
            stack.append(i)
        return area