Data Structure and Algorithms
  • Introduction
  • 面经
    • 亚马逊面经
  • Sorting
    • Quick Sort
    • Merge Sort
    • Heap Sort
  • Palindrome
    • Check String Palindrom
    • Palindrome Partitioning
    • Palindrome Partitioning II
    • Longest Palindromic Substring
    • Valid Palindrome
  • Linked List
    • Remove Duplicates from Sorted List
    • Remove Duplicates from Sorted List II
    • Remove Nth Node From End of List
    • Remove Linked List Elements
    • Remove Duplicates from Unsorted List
    • Remove duplicate Circular Linked list
    • Reverse Linked List
    • Reverse Linked List II
    • Reverse Nodes in k-Group
    • Partition List
    • Insertion Sort List
    • Reorder List
    • Linked List Cycle
    • Rotate List
    • Merge k Sorted Lists
    • Copy List with Random Pointer
    • Nth to Last Node in List
    • Add Two Numbers
    • Add Two Numbers II
    • Palindrome Linked List
  • Binary Search
    • Sqrt(x)
    • Search a 2D Matrix
    • Search a 2D Matrix II
    • Search Insert Position
    • First Position of Target
    • Last Position of Target
    • Count of Smaller Number
    • Search for a Range
    • Search in a Big Sorted Array
    • First Bad Version
    • Find Minimum in Rotated Sorted Array
    • Find Minimum in Rotated Sorted Array II
    • Search in Rotated Sorted Array
    • Search in Rotated Sorted Array II
    • Find Peak Element*
    • Recover Rotated Sorted Array
    • Rotate String
    • Wood Cut
    • Total Occurrence of Target
    • Closest Number in Sorted Array
    • K Closest Number in Sorted Array
    • Maximum Number in Mountain Sequence
    • Search Insert Position *
    • Pow(x, n)
    • Divide Two Integers
  • Graph
    • Clone Graph
    • Topological Sorting
    • Permutations
    • Permutations II
    • Subsets
    • Subsets II
    • Word Ladder
    • Word Ladder II
    • N-Queens
    • N-Queens II
    • Connected Component in Undirected Graph
    • Six Degrees
    • String Permutation II
    • Letter Case Permutation
  • Data Structure
    • Min Stack
    • Implement a Queue by Two Stacks
    • Largest Rectangle in Histogram
    • Max Tree
    • Rehashing
    • LRU Cache
    • Subarray Sum
    • Anagrams
    • Longest Consecutive Sequence
    • Data Stream Median
    • Heapify
    • Ugly Number
    • Ugly Number II
  • Misc
    • PlaceHolder
    • Fibonacci
  • Array and Numbers
    • Merge Sorted Array
    • Merge Two Sorted Arrays
    • Median of two Sorted Arrays
    • Best Time to Buy and Sell Stock
    • Best Time to Buy and Sell Stock II
    • Best Time to Buy and Sell Stock III
    • Maximum Subarray
    • Maximum Subarray II
    • Maximum Subarray III
    • Minimum Subarray
    • Maximum Subarray Difference
    • Subarray Sum
    • Subarray Sum Closest
    • Two Sum
    • 3Sum
    • 3Sum Closest
    • 4Sum
    • k Sum
    • k Sum II
    • Partition Array
    • Sort Letters by Case
    • Sort Colors
    • Sort Colors II
    • Interleaving Positive and Negative Numbers
    • Spiral Matrix
    • Spiral Matrix II
    • Rotate Image
  • Dynamic Programming I
    • Triangle
    • Minimum Path Sum
    • Unique Paths
    • Unique Paths II
    • Climbing Stairs
    • Jump Game
    • Jump Game II
    • 01 Matrix
    • Longest Line of Consecutive One in Matrix
    • Shortest Path in Binary Matrix
  • Dynamic Programming II
    • Word Break
    • Longest Common Subsequence
    • Longest Common Substring
    • Edit Distance
    • Distinct Subsequences
    • Interleaving String
    • k Sum
  • Binary Tree And Divide Conquer
    • Binary Tree Preorder Traversal*
    • Binary Tree Inorder Traversal*
    • Binary Tree Postorder Traversal*
    • Maximum Depth of Binary Tree
    • Minimum Depth of Binary Tree
    • Balanced Binary Tree
    • Lowest Common Ancestor
    • Binary Tree Maximum Path Sum
    • Binary Tree Maximum Path Sum II
    • Binary Tree Level Order Traversal*
    • Binary Tree Level Order Traversal II
    • Binary Tree Zigzag Level Order Traversal
    • Validate Binary Search Tree
    • Inorder Successor in Binary Search Tree
    • Binary Search Tree Iterator
    • Search Range in Binary Search Tree
    • Insert Node in a Binary Search Tree
    • Remove Node in Binary Search Tree
    • Find the kth largest element in the BST
    • Kth Smallest Element in a BST
    • Serialize and Deserialize Binary Tree*
    • Construct Binary Tree from Preorder and Inorder Traversal
    • Convert Sorted Array to Binary Search Tree
    • Unique Binary Search Trees *
    • Unique Binary Search Trees II *
    • Recover Binary Search Tree
    • Same Tree
    • Symmetric Tree
    • Path Sum*
    • Path Sum II*
    • Flatten Binary Tree to Linked List
    • Populating Next Right Pointers in Each Node
    • Sum Root to Leaf Numbers
    • Binary Tree Right Side View
    • Count Complete Tree Nodes
    • Invert Binary Tree
    • Binary Tree Paths*
    • Subtree of Another Tree
  • A家面试总结
  • Expedia面经收集
  • Python 常用语句
  • lotusflare
  • Microsoft
  • 模板
  • Bing 组面试总结
  • 面试笔记
  • Sliding window
Powered by GitBook
On this page

Was this helpful?

  1. Dynamic Programming I

Shortest Path in Binary Matrix

In an N by N square grid, each cell is either empty (0) or blocked (1).

A clear path from top-left to bottom-right has lengthkif and only if it is composed of cellsC_1, C_2, ..., C_k such that:

  • Adjacent cells

    C_i

    and

    C_{i+1}

    are connected 8-directionally (ie., they are different and share an edge or corner)

  • C_1

    is at location

    (0, 0)

    (ie. has value

    grid[0][0]

    )

  • C_k

    is at location

    (N-1, N-1)

    (ie. has value

    grid[N-1][N-1]

    )

  • If

    C_i

    is located at

    (r, c)

    , then

    grid[r][c]

    is empty (ie.

    grid[r][c] == 0

    ).

Return the length of the shortest such clear path from top-left to bottom-right. If such a path does not exist, return -1.

public class Solution {
    public int ShortestPathBinaryMatrix(int[][] grid) {
        int m = grid.Length;
        int n = grid[0].Length;

        if(grid[0][0] == 1 || grid[m-1][n-1] == 1){
            return -1;
        }
        bool[][] isVisited = new bool[m][];
        for(int i = 0; i < m ; i++){
            isVisited[i] = new bool[n];
        }

        Queue<int[]> q = new Queue<int[]>();

        q.Enqueue(new int[]{0, 0});
        isVisited[0][0] = true;

        int[][] dirs = new int[8][];

        dirs[0] = new int[]{-1, 0};
        dirs[1] = new int[]{1, 0};
        dirs[2] = new int[]{0, -1};
        dirs[3] = new int[]{0, 1};
        dirs[4] = new int[]{-1,-1};
        dirs[5] = new int[]{1,-1};
        dirs[6] = new int[]{-1, 1};
        dirs[7] = new int[]{1,1};

        int ans = 0;

        while(q.Count > 0){
            int size = q.Count;

            for(int l=0 ;l <size;l++) {

                var curr = q.Dequeue();

                if(curr[0] == m - 1 && curr[1] == n -1){
                    return ans + 1;
                }
                for(int i = 0; i < 8; i++){
                    int x = curr[0] + dirs[i][0];
                    int y = curr[1] + dirs[i][1];

                    if(x < 0 || x >= m || y < 0 || y >= m || isVisited[x][y] || grid[x][y] == 1){
                        continue;
                    }
                    q.Enqueue(new int[]{x, y});
                    isVisited[x][y] = true;
                }
            }
            ans ++; 
        }
        return -1;
    }
}
PreviousLongest Line of Consecutive One in MatrixNextDynamic Programming II

Last updated 4 years ago

Was this helpful?